
Submitted to:
LFMTP 2018

c© M. Randall Holmes
This work is licensed under the
Creative Commons Attribution License.

A logical framework, Lestrade, and its parent, Automath

M. Randall Holmes
Boise State University

Boise ID USA
rholmes@boisestate.edu

We report here on a logical framework, Lestrade, based on some ideas in the philosophy of math-
ematics informed by some acquaintance with Automath. Lestrade is implemented by a piece of
software which we will describe, the Lestrade Type Inspector (source at [10], manual at [13]). While
preparing this report, we revisited Automath. We briefly describe Automath in order to put Lestrade
in context. We also reimplemented Automath ourselves ([12], [11]) and will allude to some insights
coming out of this experience. A point of interest about Lestrade is that while its basic logic is very
close to that of the weaker of the two implemented versions of Automath (AUT-68), its environment
management differs sufficiently from that of Automath that in principle users do not need to enter
terms containing bound variables. It is very useful for them to do so in practice, and this is sup-
ported, but it is in principle eliminable. Automath has a version PAL without variable binding in its
user language, which is logically strictly weaker than Automath proper. When we say that Lestrade
implements the weaker of the two implemented versions of Automath, we do note that we consider (a
certain kind of) weakness to be a virtue in a logical framework. The full logic of Lestrade is stronger
than that of AUT-68 in providing support for rewrite rules, which may be introduced as primitives or
justified by previously proven equational theorems: this strengthens the logic because rewriting can
be used in type checking.

1 Brief overview

We report here on a logical framework, Lestrade, based on some ideas in the philosophy of mathematics
informed by some acquaintance with Automath. Lestrade is implemented by a piece of software which
we will describe, the Lestrade Type Inspector (source at [10], manual at [13]). We hope to be forgiven
for the literary pun.

While preparing this report, we revisited Automath. We briefly describe Automath in order to put
Lestrade in context. We also reimplemented Automath ourselves ([12], [11]) and may allude to some
insights coming out of this experience.

We are indebted to the original Automath workers, whose work is mostly collected in the yellow Au-
tomath book [15], and to Freek Wiedijk, who is the author of the other modern Automath implementation
([16],[17]) and who raises interesting questions about Automath in his comments on his implementation.

For each of the systems discussed (Lestrade and Automath) we provide a section on semantics (what
the notations of the theory mean, that is, what mathematical universe it is talking about) and a section on
pragmatics (how the system is used, that is, what it is like to talk to it).

2 Lestrade: semantics

Our intention in designing Lestrade was to create an environment in which one can interact with “abstract
mathematical objects” as concretely, finitely given things. Infinities should be potential rather than actual

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Lestrade and Automath

(we are, as it were, Aristotelean, though not necessarily constructivist: we find it interesting that classical
mathematics is apparently implementable in this framework without difficulty). Mathematical proofs
are to be viewed as a species of mathematical object (via the Curry-Howard isomorphism, which was
independently discovered by de Bruijn during the development of Automath, so the natural reference to
give is [6]). Thus the notion of function is central (it could be viewed as the primitive notion of Lestrade)
We do not want to view a function as a completely given infinite table of values, as is the usual set
theoretical view: this would frustrate our intention of avoiding actual infinities. Our guiding metaphor
in dealing with functions is to view them as directly given gadgets which will give output of a specified
type when input(s) of specified type(s) are given; for functions which are defined rather than primitive
(a function such as f (x,y) = x2 + y2) we have the description of a function by a formula or rule as in
calculus as a model.1

The things we talk about in Lestrade are of two species, entities and Functions. 2 Each species is
further partitioned into sorts. The word type is reserved for a certain kind of sort. We enumerate the
sorts of entity. There is a primitive sort prop of propositions. For each p of sort prop there is a sort
(that p) inhabited by “proofs of p” 3. There is a primitive sort type of “types of mathematical object”.
We actually call these “type labels”, deprecating treatment of a type as a collection of objects (with the
temptation that it might be viewed as infinite and given all at once), and preferring instead to view a type
as a feature encountered in each object of the type. With each τ of sort type, we associate a sort (in τ)
inhabited by the objects of type τ: this is another reason to call τ a type label, as it is not itself the type!
An additional sort obj is provided for “untyped” mathematical objects. An implementation of ZFC in
Lestrade might have the sets as of type obj: the implementation would not be unsorted, though, since
other sorts would be inhabited by propositions and proofs of propositions. We have enumerated all the
sorts of entity in Lestrade.

Each Function sort is of the form

[(x1,τ1), . . . ,(xn,τn)⇒ τ]

where the xi’s are variables bound in this notation, each τi is a notation for the entity or Function sort of
xi, and τ is an entity sort. No xi may appear in τ j for j≤ i. The variable xi may appear in τ j for j > i or in
τ: these are dependently sorted Functions. Note that entity sorts that p or in τ with p or τ complicated
terms may quite naturally contain variables.

That completes the account of Lestrade sorts. We describe Lestrade terms and the computation of
their sorts. An entity term is either atomic (with sort given by a declaration) or is of the form f (t1, . . . , tn),
with f an atomic Function term of sort

[(x1,τ1), . . . ,(xn,τn)⇒ τ]

(the coincidence of arities is required), each ti an entity or Function term, and t1 a term of sort τ1 (a
necessary condition for this to be well-sorted). If n = 1 the sort of f (t1) is τ[t1/x1]. If n > 1, the sort of
f (t1, t2 . . . , tn) is the same as the sort of f ∗(t2, . . . , tn) [and the one is well-sorted iff the other is] where f ∗

is of sort
[(x2,τ1[t1/x1]), . . . ,(xn,τn[t1/x1])⇒ τ[t1/x1]].

1We are considering functions in intension rather than in extension.
2A reason that Function is capitalized is that among the entities we may have some functions, identified as entities by the

use of a lower-case letter: these will generally be Functions packaged with a constructor
3or “evidence for p”, since use of proof here appears to presuppose a constructive point of view, which we might not take.

M. Randall Holmes 3

Lestrade Function terms are either atomic (sort declared) or of the form

[(x1,τ1), . . . ,(xn,τn)⇒ T,τ]

(with sort

[(x1,τ1), . . . ,(xn,τn)⇒ τ)]

where T is an entity term of sort τ . If f denotes

[(x1,τ1), . . . ,(xn,τn)⇒ T,τ],

then f (t1, . . . , tn) will denote T [t1/x1] if n = 1 and otherwise will have the same denotation (or lack of
denotation) as f ∗(t2, . . . , tn), where f ∗ denotes

[(x2,τ1[t1/x1]), . . . ,(xn,τn[t1/x1])⇒ T [t1/x1],τ[t1/x1]]

We put matters in this seemingly indirect way because non-atomic Function terms do not appear in ap-
plied position in Lestrade notation: they appear only as top-level notation or as arguments. The definition
just given of the denotation of f (t1, . . . , tn) if f denotes [(x1,τ1), . . . ,(xn,τn)⇒ T,τ] is also our definition
of f (t1, . . . , tn)[[(x1,τ1), . . . ,(xn,τn)⇒ T,τ]/ f], a clause of the definition of substitution. We remind the
reader that the binding of x1, . . . ,xn in the notations [(x1,τ1), . . . ,(xn,τn)⇒ (T,)τ] for Function sorts and
Functions has the usual effects on substitution.

Note that entity sort terms are prop, type, that p for each term p of sort prop, in τ for each term
τ of sort type, and obj.

3 Lestrade: pragmatics

Everything about Lestrade is dictated by the desire to be able to define a Function in the parametric form
exemplified by f (x,y) = x2 + y2, with proper attention to all sorts involved.

Thus, the basic commands of Lestrade are declarations of variables (that is parameters for Function
definitions) as being of given sorts, declarations of primitive notions (axioms and undefined operations)
taking parameters of given input sorts to a given output sort, and finally definitions of Functions in the
target format, defining a Function taking parameters of given sorts to a given term value (whose sort is
computed by Lestrade).

The declarations in a Lestrade theory at any particular point are organized into a sequence of lists
called “moves”4, of which there are always at least two, the first two being move 0 and move 1, and
the last two being move i and move i+ 1 (i being an important parameter of the Lestrade state). The
declarations in each move are ordered. Move i is referred to as “the last move”. Move i+ 1 is referred
to as the “next move”. Terms declared at the next move should be thought of as variable (parameters of
Function definitions live there) or “hypothetical”; terms declared at the last move or earlier moves are
(for the moment) constant, or “given”. Things declared at move 0 are the actual primitive and defined
notions of a Lestrade theory.

4In earlier versions, we called the moves “worlds”: there may be some kind of possible worlds semantics at work.

4 Lestrade and Automath

3.1 The basic functionality of Lestrade

We describe the basic functionality of Lestrade commands (some have further extensions). The command
open creates a new (empty) next move and increments the parameter i. The command close discards
the next move and decrements the parameter i: all declarations in the former move i+1 are discarded. If
i = 0, the close command cannot be issued. The clearcurrent command clears all declarations from
move i+1 and does not change the parameter i (so one can clear declarations from move 1). These are
the basic commands managing the move system.

The command declare x τ , where x is a fresh identifier and τ is an entity sort term, introduces a
new declaration of the identifier x as a variable of sort τ , which is introduced at the last position in the
order on move i+1.

The command construct x τ , where x is a fresh identifier and τ is an entity sort term, introduces
a new declaration of the identifier x as a primitive constant of sort τ , which is introduced at the last
position in the order on move i. A constant declared in move i > 0 might become a variable after the
close command is issued: only a constant declared in move 0 is unconditionally a constant.

The command construct f x1, . . . ,xn (:) τ (colon optional), where f is a fresh identifier and the x j’s
are previously declared (not defined) in world i+1 in the order in which they are given in the argument
list5, each x j declared with type τ j, and each variable appearing in each τ j or in τ appearing in the list,
and τ is an entity sort term, declares f as a primitive with type

[(x1,τ1), . . . ,(xn,τn)⇒ τ],

recorded at the end of move i. The basic Lestrade functionality does not provide a way to declare a
variable of Function type, but note that a Function declared using the construct command in move
i becomes a Function variable if the close command is issued from that move (an identifier which is
declared at move i+1 and was not introduced by the define command is a variable) .

The command define x T , where x is a fresh identifier and T is an entity term containing no vari-
ables, introduces the definition of x as T . This declaration is recorded at the end of move i (the last
move).

The command define f x1, . . . ,xn : T (colon obligatory), where f is a fresh identifier and the xi’s
are previously declared (not defined) in world i+1 in the order in which they are given in the argument
list, each x j declared with type τ j, and each variable appearing in each τ j or in T or in the type of T
appearing in the list, and T is an entity term, defines f as the Function

[(x1,τ1), . . . ,(xn,τn)⇒ T,τ]

of type [(x1,τ1), . . . ,(xn,τn)⇒ τ], recorded at the end of move i. Expressions f (t1, . . . , tn) involving
Functions f declared at move i+1 may be referred to as “variable expressions” (f by itself as an argu-
ment has a similar character); f is not eligible to be a variable because it is defined, but it has the same
evanescent character as a variable parameter, as we will see in discussion of what Lestrade has to do with
variable expressions when declarations are recorded.

When sort checking a term, Lestrade will carry out definitional expansions to determine whether
required equations between sorts hold. Such expansions are not displayed, except as required to eliminate
notions whose definitions may pass out of scope, as noted below.

5The rule that the arguments in the list must be given in order of declaration averts the need for quite complex declaration
checks.

M. Randall Holmes 5

The basic functionality of Lestrade that we describe here supports a limited palette of terms that the
user can enter. The user may enter atomic entity terms, entity terms of the form f (t1, . . . , tn) where the
ti’s are enterable terms, atomic Function terms (such as those introduced by the construct and define

commands) and entity sort terms. The user does not need to enter terms with bound variables (Function
sort or Function terms): we add this capacity later, for convenience rather than because it adds logical
power.

It must further be noted that when a declaration is recorded in world i, any appearances of identi-
fiers defined in world i+ 1 (“variable expressions”) in the types and values recorded must be expanded
out, since execution of the close command would discard the information needed to interpret them.
Variables declared in world i+ 1 appear as parameters of the Function being declared, and their type
information is reported as part of its type. Occurrences of defined entity terms or of defined Function
terms in applied position are expanded out in the obvious way (formally described above). Occurrences
of Function terms in argument position are replaced by the formal notation for the Function given in the
previous section, that is, by a term containing bound variables. So, while the user never has to write such
terms under the basic functionality of Lestrade, they do occur in dialogue with Lestrade. This limits the
still interesting sense in which the basic functionality of Lestrade is bound-variable-free.6

It will be seen in examples that the term notation of the Lestrade Type Inspector supports infix
notation, and supports a somewhat relaxed attitude toward the inclusion of parentheses and commas in
Function application terms.

3.2 A brief example

We present some declarations from algebra, which might give the reader some insights into what “moves”
are for.

The Lestrade Type Inspector supports literate programming, and in fact runs the current document
as a script file, executing the bits of Lestrade text that it finds in verbatim blocks, so what the reader sees
below is actual dialogue with the Inspector. Indentation based on current length of the move list is a
useful feature of the Lestrade display: for example, this makes it easy to see the nested block structure
of a complex argument in a natural deduction style (directly supported by the Lestrade move system), as
can be seen in examples in [13].

construct Number type

>> Number: type {move 0}

Note the difference between the declaration of a primitive constant 1 of type Number and the decla-
ration of variables a and b of this type.

construct 1 in Number

>> 1: in Number {move 0}

declare a in Number

>> a: in Number {move 1}

declare b in Number

>> b: in Number {move 1}

6The fact that concepts defined in closed moves are expanded out creates a significant difference in style of management
of namespace from Automath. It often makes Lestrade displays in response to user entries longer (bad) but more informative
(good). We report from some experience that there are sensible strategies both to avoid blowup in the size of displayed terms
(by making definitions at the right move) and to usefully exploit the automatic expansion of certain definitions which occurs.

6 Lestrade and Automath

There follow the definitions of two operations and an entity constant 2. Notice that while the opera-
tions are presented in prefix form in their declarations, Lestrade does understand them as infixes in other
user entered text and displays them as such.

construct + a b in Number

>> +: [(a_1:in Number),(b_1:in Number) => (---:

>> in Number)]

>> {move 0}

define 2: 1+1

>> 2: [((1 + 1):in Number)]

>> {move 0}

construct * a b in Number

>> *: [(a_1:in Number),(b_1:in Number) => (---:

>> in Number)]

>> {move 0}

open

declare x in Number

>> x: in Number {move 2}

Notice in the following declaration of a function f (in move 1, when move 1 is move i) the letters
a and b are treated as constants (in a way familiar from algebra) although we know with the other side
of our mind that a and b are also variables, while the variable x (from move 2) is treated properly as the
defining parameter of the function.

define f x : (a * x) + (b * x) +1

>> f: [(x_1:in Number) => (((a * x_1) +

>> ((b * x_1) + 1)):in Number)]

>> {move 1}

close

Notice that the function Test which we define just below (defined when i = 0 and move 1 is move
i+1 instead of move i) has the erstwhile (relative) constants a and b as its variable parameters, and notice
also that f (2) is a variable expression, since f is defined at move i+1, and is duly expanded out in the
displayed form of the body of the definition of Test).

define Test a b: f(2)

>> Test: [(a_1:in Number),(b_1:in Number) =>

>> (((a_1 * 2) + ((b_1 * 2) + 1)):in Number)]

>> {move 0}

Extensive examples of theory development in Lestrade, using all the features of Lestrade discussed
here and below, are found in [13].

3.3 An enhancement: rewriting

Lestrade supports rewriting as part of its logic.
The command rewritec id x1, . . . ,xn, source, target where id is a fresh identifier, x1, . . . ,xn are

an argument list as in the construct or define command, and source and target are terms of the
same sort, with every variable contained in source or its type appearing in the argument list and every

M. Randall Holmes 7

variable appearing in target or its type appearing in source or its type, will declare id as a Function
taking arguments x1, . . . ,xn,P,y where P is a fresh variable representing a predicate of entities of the
common sort of source and target and y is a fresh variable of type thatP(source) to output of type
thatP(target). This is in effect a proof that source is equal to target for all values of the xi’s. In
addition, a rewrite rule is recorded, so that terms of the form source will always be rewritten to the form
target whenever they are encountered (as long as id remains in scope). There are subtleties in the exact
forms that source and target can take and in the exact conditions under which rewrites are applied
which enforce confluence (termination is the responsibility of the user). Lestrade will use rewrite rules
to expand defined terms and to justify equations of types. When a term is defined, Lestrade will actually
apply rewrite rules to its displayed form; rewrite rules will not be visibly applied to types, but Lestrade
will use rewriting as well as definitional expansion in attempting to show equality of sort terms during
sort checking. This has been used in a partial simulation of the type checking algorithm of homotopy
type theory ([9]).

The variant command rewrited id x1, . . . ,xn, source, target differs in requiring that id be an iden-
tifier already declared as a Function taking arguments x1, . . . ,xn,P,y to output of type thatP(target)
as above. In this way, theorems proved within a Lestrade theory can be used to extend the type checking
algorithm with new rewrite rules, and to justify expansions of defined terms.

The use of rewrite rules to expand the displayed forms of defined terms arguably turns Lestrade into
a programming language: we have written a Lestrade book ([8]) in which the algorithms for addition and
multiplication of binary numerals and the recursive algorithm for computation of Fibonacci numbers are
“proved” as a system of rewrite rules from basic algebra axioms, and quite large Fibonacci numbers can
be computed as a side effect of defining them (rewrites being properly memoized). But it is the ability to
type-check using rewriting that makes the rewrite feature an essential extension of the logic of Lestrade.

3.4 Another enhancement: implicit arguments

The basic declarations for the propositional connective ∧ and the rule of conjunction might look like this
in Lestrade:
declare p prop

>> p: prop {move 1}

declare q prop

>> q: prop {move 1}

construct & p q prop

>> &: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare pp that p

>> pp: that p {move 1}

declare qq that q

>> qq: that q {move 1}

construct Conj p q pp qq : that p & q

>> Conj: [(p_1:prop),(q_1:prop),(pp_1:that p_1),

>> (qq_1:that q_1) => (---:that (p_1 &

>> q_1))]

>> {move 0}

When Conj is used one needs (if one only has the basic functionality) to use four arguments, two of
which, p and q, can be deduced from the types of the others and which might be quite complicated terms

8 Lestrade and Automath

in practice. A further feature of Lestrade permits the declaration of Functions (primitive or defined) with
implicit arguments. In this style, the last declaration would take the shape

construct Conj2 pp qq : that p & q

>> Conj2: [(.p_1:prop),(pp_1:that .p_1),(.q_1:

>> prop),(qq_1:that .q_1) => (---:that

>> (.p_1 & .q_1))]

>> {move 0}

The declaration functions of Lestrade identify the arguments p and q which are missing [one can
note that the automatically generated order of arguments is not exactly as above], and in any particular
instance of application of Conj2, matching will be used to determine the appropriate values of p and
q. Lestrade can use matching to deduce (or sometimes guess) Function arguments as well as entity
arguments (it has some higher order matching capability). Implicit argument deduction using higher
order matching is very useful for bearable implementation of quantifier and equality rules, for example.

3.5 A further enhancement: user-entered terms with bound variables

Users of Lestrade never strictly need to write Function or Function sort terms and so can avoid ever
writing terms with bound variables, but it is quite useful to add this functionality. Commands declare
f τ may contain Function sorts τ and so declare Function variables. The form of a Function sort term
entered by a user is [x1,...,xn => tau], where the xi’s are variables declared at the next move and
tau is an entity sort term. Note that the need to write out types for the inputs is avoided. Note that these
bound occurrences of x1,...,xn do not have the same reference as the variables of the same shape
declared in move i+1: what they share is their sorts (with the subtlety that occurrences of x j for j < k
in the type of a bound xk refer to the bound x j preceding it, not to the ambient x j in move i+1). If direct
declaration of a Function variable were avoided, the variables appearing bound in the sort term would
actually be declared in a further move or moves: these bound variables are in effect clones of variables
in the current “next move” standing in for variables notionally to be declared in a further move or moves
never opened explicitly.

Two kinds of complex Function terms are supported in addition to the atomic Function terms pro-
vided in the basic functionality. If f has type

((x1,τ1), . . . ,(xn,τn)⇒ τ)

and m < n, the term f (t1, . . . , tm) represents

((xm+1,τm+1), . . . ,(xn,τn)⇒ f (t1, . . . , tm.xm+1, . . . ,xn),τ),

a curried term. We note that in the Type Inspector’s term language, the parentheses enclosing the ar-
gument list of a curried term are mandatory (so that the parser doesn’t attempt to absorb the missing
arguments from any following material). A more general form of complex Function term is

[x1,...,xn => T],
which represents ((x1,τ1), . . . ,(xn,τn)⇒ T,τ), where each xi is a variable declared at the next move
(with the subtlety noted above that any reference to x j with j < i in its type is a reference to the bound
x j appearing in this term, not to the ambient x j in the next move), and τ is the sort computed by Lestrade
for the entity term T . Again, it is interesting to note that the bound variables are actually clones of the
variables xi in the next move which would have to be declared in a further move if we did not have the
device of user-entered variable binding terms.

M. Randall Holmes 9

4 Automath: semantics

We present the semantics of AUT-QE, the more elaborate of the two implemented dialects of Automath7.
Lestrade is more closely related to the weaker dialect AUT-68, but this can conveniently be described
as a subset of AUT-QE (and we find AUT-QE interesting, though we think it has a bit too much logical
power). The terminology we use is often our own. The dialects are described in relation to each other in
[7]

Things that we talk about in Automath are conveniently divided into three species, entities, sorts, and
metasorts. Each entity has a type which is a sort; each sort has a type which is a metasort.

There are four kinds of terms in the Automath language: there are atomic terms, abstraction terms,
application terms, and construction terms.

An atomic term can be of any of the three species. prop and type are reserved metasort terms.
An abstraction term is of the shape [x : A]T , where x is a variable bound in T (but not in A) and A is

the type of x. In classical Automath, we would require x to be an entity variable and thus require A to be
a sort. For reasons to be seen, we also allow x to be a sort variable and A thus its type, a metasort. [x : A]T
is of the same species (entity, sort, or metasort) as T . If T is of type U , [x : A]T is of type [x : A]U .

An application term is of the shape 〈a〉 f (traditional order reversed). If the type of a is A, the domain
of the type of f must be A. If the type T of f is of the shape [x : A]U or reduces to this shape, it has
domain A. If T is not of the shape [x : A]U and does not reduce to this shape, then T is a sort, and the
type of T , a metasort, will be of the shape [x : A]V or will reduce to this shape, for some A which is the
domain of T as well as being the domain of the type of T . If the type of f is U and the type of a is A, the
type of 〈a〉 f is 〈a〉U (usually further reducible). In classical Automath a would be an entity, but we also
allow a to be a sort.

A construction term is of the shape f (t1, . . . , tn) where f is an atomic term declared or defined as a
construction and t1, . . . , tn are entity and/or sort terms of appropriate types determined by f . When f is
defined rather than primitive, we regard this term as abbreviating 〈tn〉 . . .〈t1〉 f !, where f ! is an abstraction
term determined by the definition of f as a construction in a way that we explain below (it can be viewed
in this way when f is primitive, but f ! would then be atomic). Thus, the explanation of the typing of a
construction term is subsumed under the explanations of the other types of terms, in principle. We are
able to do this precisely because we allow abstractions over sort variables and applications to sort terms.
There are intimations of this approach in the Automath literature. A construction f of arity n may appear
with an argument list of length < n or even as an atomic term: missing arguments are supplied in a way
to be explained below. Note that a construction f appearing as an atomic term does not represent the
associated abstraction f ! but a generic value of this abstraction.

To save space, we do not give the formal definition of substitution: we merely note that the usual
attention must be paid to the fact that x is bound in T but not in A in the notation [x : A]T , and we provide
the notation T [A/x] for substitution of the term A for the variable x in the term T .

We describe the notion of equivalence of terms. Equivalence is reflexive, symmetric, and transitive.
If A is equivalent to A′, T [A/x] is equivalent to T [A′/x]. [x : A]U is equivalent to [y : A]U [y/x] if y does
not occur in U . [x : A][〈x〉T is equivalent to T if x does not occur in T . 〈a〉 [x : A]T is equivalent to
T [a/x]. We assume of course that all terms discussed are well-typed. No terms are equivalent which are

7Strictly speaking, we describe a stronger system which we might call AUT-QE2, since it allows binding of variables of
sort type (degree 2 variables, in Automath terminology). If use of the sort variable binding (and of application to sorts) is
restricted to its implicit use in expanding out defined and declared constructions and their types, the system implemented is
exactly AUT-QE, and our implementation has a setting like this, but its default setting allows users to take advantage of the
addtional abstraction power.

10 Lestrade and Automath

not shown to be equivalent by applications of these rules.
Further, there is a notion of subtyping. A sort may have more than one type (an entity always has a

unique type up to equivalence): the type of a sort refers to its minimal type in the subtype order (a sort
always has a minimal type). Subtyping is reflexive and transitive. [x : A]prop is a subtype of prop when
A is a sort (not when A is a metasort). [x : A]type is a subtype of type when A is a sort (not when A is a
metasort). If M is a subtype of N, [x : A]M is a subtype of [x : A]N, for any A. All subtype relations are
computed using these rules alone. Further, all metasort terms other than prop and type are constructed
by applying a sequence of abstraction prefixes to type or prop, or are application terms which reduce
to a term of this form.

Well-typedness of Automath terms is computable on the basis of the information given above.
The subtyping in Automath has caused (largely negative) comment. A diabolical variant of the

system described so far would extend the subtyping by allowing [x : A]prop to be a subtype of prop and
[x : A]type to be a subtype of type when A is a metasort. We do not need this, and in fact deprecate it
in a logical framework: we believe that logical frameworks should have a minimum of logical strength
and a maximum of expressive power, and would be inclined to use a variant of AUT-QE extended (as
we have presented it) with abstraction over sort variables but with all subtyping removed. However, we
conjecture that the diabolical variant may be both consistent and interesting as a grand logic, though it
looks perfectly mad.

5 Automath: pragmatics

The Automath checker reads a sequence of lines from a book. We describe a style of writing lines which
is adapted from an older Automath style, but is easier to describe.

Each line has four parts, a context part, an identifier part (indicating the identifier declared by the
line), a value part, and a type part. We implemented a dialect (not witnessed in the sources, which use
various delimiters, but witnessed in our sample code below) in which these parts are simply written on
one line separated by whitespace.

Any Automath line is read in a context. The context will be used as the argument list of constructions
to be defined in the future. The context is a list of variables each assigned an entity or sort type. Items
appearing later in the context may have types depending on items appearing earlier. The context is either
empty (in which case we use the name 00 for it) or has the same name as its last entry.

The context part of a line is an identifier (either 00 or a variable name). The most recently declared
context with that identifier as its name is used as the context for reading the rest of the line.

If the value part of the line is EB (which the yellow Automath book says abbreviates “empty block
opener”) the effect of the line is to declare a new context obtained by appending the identifier part of the
line to the current context, with the type indicated by the type part of the line.

If the value part of the line is PN (abbreviating “primitive notion”) the effect of the line is to declare
a new primitive construction, named by the identifier part of the line, with argument list determined by
the current context and output type determined by the type part of the line. Our exact formulation of this
is as follows: if the context is ((x1,τ1), . . . ,(xn,τn)) (the xi’s being the variables and the τi’s their types)
and T is the type part of the line, and f is the identifier part of the line, the effect is to define f ! as having
type [x1 : τ1] . . . [xn : τn]T (recalling that f (t1, . . . , tn) is to be interpreted as 〈tn〉 . . .〈t1〉 f !).

If the value part of the line is a term T and the type part of the line is a term U , and U is a type
of T (Automath software checks this and rejects the line if this is not the case; a type because of the
subtyping), and the context and identifier parts are as in the previous paragraph, then the effect of the

M. Randall Holmes 11

line is to define f ! as [x1 : τ1] . . . [xn : τn]T , which of course has as a type [x1 : τ1] . . . [xn : τn]U .
The Automath workers were aware of the possibility of explaining constructions in terms of abstrac-

tion and application, as can be seen in [4], [5].
When a construction name f occurs with no arguments or not enough arguments, the initial segment

of the current context of the appropriate length replaces the missing arguments, subject to type checking.
In classical Automath, this must coincide with the initial segment of the same length of the context in
which f was declared, but we do not require this.

There are some significant variations in notation for Automath lines, especially in Jutting’s translation
of Landau. We have entirely avoided discussing the Automath paragraph system.

6 Comparison of Automath and Lestrade

Any Lestrade theory can be presented in AUT-QE (and in fact in the older dialect AUT-68). Declare a sort
Prop of propositions. Let this represent the sort prop in Lestrade. Declare a primitive construction That

such that That(p) is a sort if p is of type Prop. Similarly declare a type Type and a type constructor In
with precisely analogous behavior. All Functions that we might want to declare in our Lestrade theory
would then be precisely analogous to abstractions with sensible Automath types. It should be noted that
the method of treatment of Prop and the use of a constructor acting as That does (in the Automath
literature, tbis construction is called something like Proofs; there are variations, but this is what we will
use) is exactly how propositions and their proofs were treated in the first implemented dialect AUT-68 of
Automath, in which type was the only metasort (and there was no use of metasort abstractions, and so
no subtyping). We do not know whether analogues of Type and In appear in the Automath sources: the
kind of caution in defining types and type constructions which they represent exactly mirrors AUT-68’s
cautious approach to propositional primitives via Curry-Howard.

The subtyping of AUT-QE was designed to make certain logical operations definable in the Automath
logic, which they were not in AUT-68 and are not in Lestrade. Our preference is that these operations be
primitives, due to a general attitude toward what a logical framework (as opposed to a full-fledged logic)
is supposed to do.

The following snippet of AUT-QE code defines implication outright in the logic of Automath, without
introducing any primitives. Subtyping plays a crucial role in making this possible: the minimal type of
[pp : p]q is [pp : p]prop, but this is a subtype of prop, so the claimed output type of imp checks.8

00 p EB prop

p q EB prop

q imp [pp:p]q prop

We further present modus ponens and the deduction theorem. In AUT-QE both modus ponens and
the deduction theorem are simply definable.

8The interaction between quantification and the AUT-QE subtyping is remarkable. If τ is a type and P is of type [x : τ]prop,
there are two quite different interpretations of P. It is obviously a predicate of type τ objects. Because of the subtyping, it is
also of type prop: what proposition would it be? A proof of (∀x : τ)P(x) will be a function taking each x of type τ to a proof of
P(x), that is, a function of type [x : τ]P(x), that is, a function of type P: the same object which is for AUT-QE the predicate P
is also for AUT-QE the proposition (∀x : τ)P(x), whence it follows that the function implementing the universal quantifier over
type τ is actually the identity function on [x : τ]prop! We don’t advocate this (though it does work): in AUT-68 or Lestrade,
the universal quantifier must be introduced as a primitive, with somewhat different typing because propositions are a sort not a
metasort.

12 Lestrade and Automath

q pp EB p

pp rr EB imp(p,q)

rr mp <pp>rr q

q arg EB [pp:p]q

arg Ded arg imp(p,q)

Application of modus ponens is function application of the function witnessing p→ q to the evidence
given for p. The Deduction Theorem is simply the identity operation, since the content of the deduction
theorem argument for p→ q is precisely the sort of thing we define as an object of sort p→ q!

In AUT-68, we take the liberty of showing the reader our dialogue with our own Automath checker,
up to the development of a proof of p→ p9:

00 Prop PN TYPE

%1. Prop = PN : type

00 p EB Prop

% (p:Prop)

p Proofs PN TYPE

%2. Proofs(p:Prop) = PN : type

p q EB Prop

% (p:Prop,q:Prop)

q imp PN Prop

%3. imp(p:Prop,q:Prop) = PN : Prop

q pp EB Proofs(p)

% (p:Prop,q:Prop,pp:Proofs(p))

pp rr EB Proofs(imp(p,q))

% (p:Prop,q:Prop,pp:Proofs(p),rr:Proofs(imp(p,q)))

rr mp PN Proofs(q)

%4. mp(p:Prop,q:Prop,pp:Proofs(p),rr:Proofs(imp(p,q))) = PN : Proofs(q)

q arg EB [pp:Proofs(p)]Proofs(q)

% (p:Prop,q:Prop,arg:[pp:Proofs(p)]Proofs(q))

arg Ded PN Proofs(imp(p,q))

%5. Ded(p:Prop,q:Prop,arg:[pp:Proofs(p)]Proofs(q)) = PN : Proofs(imp(p,q))

p arg1 [pp:Proofs(p)]pp [pp:Proofs(p)]Proofs(p)

%6. arg1(p:Prop) = [pp:Proofs(p)]pp : [pp:Proofs(p)]Proofs(p)

p Selfimp Ded(p,p,arg1) Proofs(imp(p,p))

%7. Selfimp(p:Prop) = Ded(p,p,arg1(p)) : Proofs(imp(p,p))

We went a little further and proved p→ p, as the reader might decipher. In Lestrade, the following
code has the same effect. We have a little fun, writing this in bound variable free style: it could be done
a little more succinctly (and more similarly to the AUT-68 code) using user-side variable binding (there
are lots of bound variables, as always, in the Lestrade system replies).

clearcurrent

declare p prop

>> p: prop {move 1}

9We turned off the omission of arguments feature: this makes the display of Automath terms shorter but often makes them
hard to read!

M. Randall Holmes 13

declare q prop

>> q: prop {move 1}

construct -> p q prop

>> ->: [(p_1:prop),(q_1:prop) => (---:prop)]

>> {move 0}

declare pp that p

>> pp: that p {move 1}

declare rr that p->q

>> rr: that (p -> q) {move 1}

construct Mp pp rr that q

>> Mp: [(.p_1:prop),(pp_1:that .p_1),(.q_1:prop),

>> (rr_1:that (.p_1 -> .q_1)) => (---:that

>> .q_1)]

>> {move 0}

open

declare pp2 that p

>> pp2: that p {move 2}

construct ded pp2 that q

>> ded: [(pp2_1:that p) => (---:that q)]

>> {move 1}

define selfimp pp2: pp2

>> selfimp: [(pp2_1:that p) => (pp2_1:that

>> p)]

>> {move 1}

close

construct Ded ded : that p->q

>> Ded: [(.p_1:prop),(.q_1:prop),(ded_1:[(pp2_2:

>> that .p_1) => (---:that .q_1)])

>> => (---:that (.p_1 -> .q_1))]

>> {move 0}

define Selfimp p: Ded selfimp

>> Selfimp: [(p_1:prop) => (Ded([(pp2_2:that

>> p_1) => (pp2_2:that p_1)])

>> :that (p_1 -> p_1))]

>> {move 0}

Notice appearances of implicit arguments in the code above. The objects Ded(F), where F is a
Function from proofs of p to proofs of q, are examples of (lower case) functions as entities, as would be
clearer in an analogous (via Curry-Howard) construction of arrow types and application of functions of
such types, which cannot be inserted here due to limitations of space (see [13] for a complete develop-
ment).

We would have liked to present similar illustrations of quantification, but space forbids. Very large
examples of Automath text on more substantial topics, and moderately large examples of such texts in
Lestrade, exist. Examples for Lestrade are found in [13] and elsewhere on the same web page; the prin-
cipal example for Automath is the complete implementation of Landau’s little elementary analysis book

14 Lestrade and Automath

[14] by Jutting described in [2], with Automath text [1] (rescued from oblivion by Wiedijk) available.10

We think that the principal merit of Lestrade relative to AUT-68, which has a very similar logic, is
that it has a more flexible context mechanism than Automath, and has the ability to declare functions
more directly. It does seem natural that f (x,y) = x2 +y2 should define the function f , not the expression
x2+y2. The Automath context is a uniform long list of dependently typed variables, and one can observe
it getting very long indeed in places in the Jutting translation of Landau’s little analysis book. The
Automath device of allowing elimination of arguments of constructions which can be supplied from
an initial segment of the context is quite clever, and does not have a direct analogue in Lestrade. But
one can use the move mechanism (and the fact that a Lestrade function definition does not have to use
all the variables in the current context) to reduce the number of arguments that functions require to a
manageable (and natural) level.

Automath has a subset called PAL, which does not contain variable binding. Some reasoning can be
done in PAL, but it is strictly weaker than Automath. Some point is made about the relationship between
the Lestrade approach and the Automath approach by the fact that user-side notation with bound variables
is in principle optional, though of course highly convenient, in Lestrade.

A subtle difference between the Automath and Lestrade approaches is that the primitive notion of
function in Automath is that of “function with one argument”. Functions with many arguments reduce
to functions of one argument by currying, and our reduction of constructions in Automath follows this
path. In Lestrade, the primitive notion of function is that of “function with n arguments” for each concrete
value of n. In effect, the application terms and construction terms of Lestrade simply coincide. Neither
theory has a native notion of pair or tuple: in both theories, dependent function typing is almost all the
typing provided.

The implicit argument mechanism is a solution for Lestrade of a problem which also exists for Au-
tomath (see [3], where a never-implemented approach to this problem is considered). It may be noted that
our Automath checker in fact implements not only AUT-68 and AUT-QE, the previously implemented
dialects, but AUT-SL, the single line variant, or something functionally equivalent, as well, as a side ef-
fect of our permitting the binding of sort variables in abstractions (see [4],[5]): our proposal of admitting
abstraction over sorts allows the preparation of terms representing entire books essentially as described
in these sources, but we do not think our proposal is exactly the same). Rewriting is another example of
a feature which could be added to Automath in basically the same way we added it to Lestrade, and we
are planning to extend our Automath implementation in this way.

References

[1] L. S. van Benthem-Jutting: the original source files for the verification of the Grundlagen. http://www.cs.
ru.nl/F.Wiedijk/aut/grundlagen-1.0.tar.gz. Original files recovered by F. m as discussed in [16],
[17].

[2] L. S. van Benthem-Jutting (1994): Checking Landau’s ‘Grundlagen’ in the Automath system. In Nederpelt,
Geuver & de Vrijer, editors: Selected Papers on Automath, North-Holland, pp. 701–732, 763–780.

[3] L. S. van Benthem-Jutting (1994): Checking Landau’s ‘Grundlagen’ in the Automath system. Appendix 9
(AUT-SYNT). In Nederpelt, Geuver & de Vrijer, editors: Selected Papers on Automath, North-Holland, pp.
299–301.

10Humility requires that we note that Wiedijk’s Automath checker aut takes 0.6 seconds to check [1], while ours takes just
under three hours. Our code is written in Python and not optimized as it should be. But writing it was very important for
understanding the system.

http://www.cs.ru.nl/F.Wiedijk/aut/grundlagen-1.0.tar.gz
http://www.cs.ru.nl/F.Wiedijk/aut/grundlagen-1.0.tar.gz

M. Randall Holmes 15

[4] N. G. de Bruijn (1994): AUT-SL, a Single Line Version of Automath. In Nederpelt, Geuver & de Vrijer,
editors: Selected Papers on Automath, North-Holland, pp. 275–81.

[5] N. G. de Bruijn (1994): Generalizing Automath by Means of a Lambda-Typed Lambda Calculus. In
Nederpelt, Geuver & de Vrijer, editors: Selected Papers on Automath, North-Holland, pp. 313–37. See
remarks on p. 336. Also see remarks on p. 275, in [4].

[6] N. G. de Bruijn (1994): The Mathematical Language Automath, its Usage, and some of its Extensions. In
Nederpelt, Geuver & de Vrijer, editors: Selected Papers on Automath, North-Holland, pp. 73–100. See page
87 for proofs as types.

[7] D. T. van Daalen (1994): A Description of Automath and Some Aspects of its Language Theory. In Nederpelt,
Geuver & de Vrijer, editors: Selected Papers on Automath, North-Holland, pp. 101–126.

[8] M. R. Holmes: A computational experiment: programming the computation of Fibonacci numbers in
Lestrade. http://math.boisestate.edu/~holmes/automath/fibonacci.pdf.

[9] M. R. Holmes: Implementing homotype type theory in Lestrade. http://math.boisestate.edu/

~holmes/automath/hotttest.pdf. This is incomplete but does illustrate use of rewriting to extend the
type system of Lestrade.

[10] M. R. Holmes: Lestrade Type Inspector Source with comments. http://math.boisestate.edu/

~holmes/automath/lestrade.sml. In the same directory, there is a readable version with comments,
change to .pdf extension.

[11] M. R. Holmes: Manual of the MANIAC Automath checker. http://math.boisestate.edu/~holmes/

automath/automathmanual.pdf.
[12] M. R. Holmes: Source of the MANIAC Automath checker. http://math.boisestate.edu/~holmes/

automath/automath.py.
[13] M. R. Holmes: A system of dependent types, with an implementation and a philosophy. http://

math.boisestate.edu/~holmes/automath/dependent_types.pdf. This old draft paper serves as the
Lestrade manual. It also contains extensive examples of Lestrade implementations of basic concepts..

[14] E. Landau (1951): Foundations of Analysis. Chelsea.
[15] Nederpelt, Geuver & de Vrijer (1994): Selected Papers on Automath. North-Holland.
[16] F. Wiedijk: A nice and accurate checker for the mathematical language Automath. http://www.cs.ru.

nl/F.Wiedijk/aut/aut-4.2.tar.gz. The manual is included in the aut distribution, found at the URL
indicated.

[17] F. Wiedijk (2002): A New Implementation of Automath. Journal of Automated Reasoning 29, pp. 365–387,
doi:10.1023/A:1021983302516.

http://math.boisestate.edu/~holmes/automath/fibonacci.pdf
http://math.boisestate.edu/~holmes/automath/hotttest.pdf
http://math.boisestate.edu/~holmes/automath/hotttest.pdf
 http://math.boisestate.edu/~holmes/automath/lestrade.sml
 http://math.boisestate.edu/~holmes/automath/lestrade.sml
 http://math.boisestate.edu/~holmes/automath/automathmanual.pdf
 http://math.boisestate.edu/~holmes/automath/automathmanual.pdf
 http://math.boisestate.edu/~holmes/automath/automath.py
 http://math.boisestate.edu/~holmes/automath/automath.py
 http://math.boisestate.edu/~holmes/automath/dependent_types.pdf
 http://math.boisestate.edu/~holmes/automath/dependent_types.pdf
http://www.cs.ru.nl/F.Wiedijk/aut/aut-4.2.tar.gz
http://www.cs.ru.nl/F.Wiedijk/aut/aut-4.2.tar.gz
http://dx.doi.org/10.1023/A:1021983302516

	Brief overview
	Lestrade: semantics
	Lestrade: pragmatics
	The basic functionality of Lestrade
	A brief example
	An enhancement: rewriting
	Another enhancement: implicit arguments
	A further enhancement: user-entered terms with bound variables

	Automath: semantics
	Automath: pragmatics
	Comparison of Automath and Lestrade

